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Abstract—This paper presents a process to monitor test
station health using the Weibull method and statistical
patterns. The methodology is currently being applied to the
F-16 automated test equipment (ATE) at the Ogden, Utah
Air Logistic Center (OO-ALC) maintenance depot. An
automated stream of test data collected from ATEs is used
to process test results and to identify improvements
necessary to increase the failure forecast accuracy. The
paper discusses solutions to identify causes of ‘re-test OK’
(RTOK) due to discrepancies between software testing
procedures in the line and shop repairable units. The
process includes a decision support system that uses
artificial intelligence methods, such as expert system and
neural networks, and a knowledge database to improve the
troubleshooting capability. The paper also discusses a
prototype development that collects malfunction codes
(MFL) originated by the aircraft bus monitoring system.
The MFL information is correlated with test results to detect
RTOK causes.

ACRONYMS

ATE — automatic testing equipment

CND - cannot duplicate

KB — knowledge base

LRU - line repairable unit

MC — mission capability

MCR — mission capability rate

MFL — maintenance fault list

MTBF — mean time between failures

MTTF — mean time to failure

00-ALC - Ogden Utah Air Logistic Center
RTOK - re-test OK

SPC — statistical control process

SRU - shop repairable unit

TSHMS - test station health monitoring system
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1. INTRODUCTION

This methodology grew out of a Small Business Innovation
Research (SBIR) contract sponsored by the Ogden-ALC
Technology and Industrial Support Directorate.  The
Ogden-ALC Avionics and Electronics Repair Directorate as
well as the SBIR Program Office have funded the current
product enhancement phase jointly.

The original objective of the SBIR effort was to
apply statistical control processes and artificial intelligence
techniques to test results output from automated test
equipment (ATE) in order to determine if the effects of
aging and environmental factors could be detected on units
under test (UUT) and the ATE itself. In order to reach the
SBIR objective, several methods and techniques had to be
developed or modified. The first was a means to capture,
parse and archive the raw test program results in a relational
database for automated retrieval and processing. Then the
statistical process algorithms were modified from a
controlling application to a form appropriate for monitoring.
A variety of different statistical patterns, using rule based
Expert System techniques, were evaluated for applicability
to the present purpose. Those selected are discussed in
greater detail later in this paper. Finally the added benefit
of including failure and repair data to the developing
automated analytical process that would extend the original
objective to a broader failure-forecasting tool that will aid
ATE operators and repair technicians, was realized. In order
to make progress toward this expanded objective and to
utilize Weibull methods for forecasting failures, a
dependable source of failure and repair data is required. We
turned to other ongoing efforts to reduce total ownership
costs for sustainment of the F-16 Fighting Falcon, the
largest fleet of combat aircraft in the world. The process
developed under Acquisition Reform flexible sustainment
concepts to identify, analyze and implement high return on
investment (ROI) solutions for avionics systems high cost
drivers was named Falcon Flex. The Falcon Flex
maintenance and repair database, while not optimum, was
the most dependable and defensible source of the needed
data available at the time. Still some important failure data
is not being effectively captured, such as assembly
operating time, environmental stress levels and cause of
failure (failure mode) by any existing data system. This
paper discusses how some of these data shortcomings have



been addressed and concludes with current and future
research and development efforts required to refine the data
capture process and thereby improve failure forecasting of
ATE assemblies.

The following sections will present a test station health
monitoring system (TSHMS) developed for the Ogden Air
Logistic Center (OO-ALC) in Utah. Experimental results
are presented without actual identification of part numbers,
serial numbers, and station identifications for security
reasons.

2. SYSTEM SPECIFICATION

The first requirement to implement a test station health
monitoring system is the capability to collect test results
from the station. Old legacy stations do not have this
capability built in. Test results can be collected using ‘dumb
terminal” scripts that write the results to a local file, or by
the testing software that writes directly to a data repository
subsystem (database). The main problem in either case is
the data format. There are currently no standards that apply
to test output format. As a result, the test data might not be
uniform and will require additional parsing or data
processing. We will assume in this paper, that raw test data
is formatted and available in appropriate format. The
importance of test station health monitoring systems in
diagnostics is critical to the capability of isolating actual
causes of failure in cases where the cause can be either the
station instrumentation, or the unit under test, or stack
tolerance problems. Diagnostics can be supported using
models and/or actual test and repair information. Repair
data can also be used to identify causes of failure, or failure
modes. Operating time, failure history, or failure modes are
necessary to forecast failures. Actual failure and repair data
can be used to feedback for adaptive models. Models are
useful to provide information for cases where no previous
failure or repair information is available.

3. DATA ANALYSIS METHODS

There are three types of data used in the TSHMS: 1) test
data, 2) repair data, and 3) failure data. Test data consists of
test measurements and test results. Repair data consists of
component replacement information. Failure data consists
of all data related to the component’s operation and failure.
Data analysis algorithms are applied to raw test, repair, and
failure data. These algorithms consist of statistical methods
such as statistical process control (SPC) rules and failure
analysis methods. SPC algorithms were modified for
monitoring (instead of controlling) purposes.

3.1 Test Data

Test data consists of test measurements output by the testing
software. Test data includes: item identification (part and
serial number), test date and time, test code and name,
measurement upper and lower limits, units of
measurements, and the measurement value. Table 1 presents
a typical set of test results.
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Statistical analysis (presented in section 3.4) is performed
using measurement values versus time. In our F-16
application, test measurements are grouped by part and
serial numbers, test code, and test name. Test results
presented in Figure 1 belong to an actual F-16 avionic
system.
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Figure 1 — Typical Test Measurement Results Along Time

In order to avoid possible disclosure of classified
information the actual item’s noun, part and serial numbers,
and failure mode information were omitted. The graph
presents 74 data points of 5 VDC power supply
measurements collected over a period of 16 months. Step
function events are clearly identified between periods of
relative low variability. A consistent ‘bias’ towards the
lower limit is also clear. The sensitivity (standard deviation)
of the actual signal can be compared to the upper and lower
limits included in the plot.

3.2 Repair Data

Repair data consists of all information related to repair
actions after a failure is detected during the test phase. It
usually includes: part number, serial number, repair date,



description and item repaired. Table 2 presents typical
repair data records. Repair information populates a
Knowledge Base (KB) that supports diagnostic procedures.
The KB accumulates repair history for items identified by
part and serial numbers. Test failures are linked in real-time
to the KB and provide support to ATE operators and repair
technicians. Past failure and repair information can be
retrieved. For ‘never-before’ cases the failure model
provides the support. Failure models are adjusted using the
KB data. In our specific F-16 application, the Repair Date
field in Table 1, which corresponds to the “date of repair’, is
often used as the ‘date of failure’. In this case, there is an
unknown (undocumented) time gap between the actual date
of failure (in the aircraft) and the date of repair. The Repair
Date is the best representation for failure datum available.
This implies that our failure estimate method includes
inaccuracies due to the uncertainty of the failure datum. The
Item Repaired field in Table 2, which represents the items
that were repaired, adjusted or replaced, is often associated
with failure modes. This information misrepresents the
actual cause of failure, or the failure mode. The accuracy of
the failure forecast is also affected by the uncertainty of the
failure modes.

Table 2 — Typical Repair Data

~ Part Serial | Repair Repair Item
Number |Number| Date Description Repaired
12609 C102 | 8/27/1998 | Logic Assembly #2 ue
12609 C102 | 6/11/1998 | Logic Assembly #2 Resolder P1
12609 C102 | 9/19/1998 | Logic Assembly #2 ue
12609 C102 | 3/2/1998 | Logic Assembly #2 ue
12609 C102 | 2/2/1998 | Logic Assembly #1 Repair pin
12609 C102 | 1/26/1998 | Logic Assembly #1 Ué
A0762-5 | E0924 | 12/9/1997 | Power Supply #4 Q2, 2N2222A
A0762-5 | E0924 | 5/19/1998 | Power Supply #4 Q7, 2N2905A
A06738-7 | 005823 | 11/25/1997 w‘“’““’”;: iGe”e“"‘“ Ul4
A06836-4 | C0034 | 4/22/1998 |  Input/Output #2 u27

The failure analysis method described in section 3.3 uses
the Repair Date as failure datum (‘ages’). In order to
convert the dates to ages, the initial date of operation (or
service) must be known. The age is counted from the initial
date of operation until the date of failure. In our F-16
application, the date of initial operation was not available
and affects the prediction of future failures.

3.3 Failure Data

Typical failure data includes time of failure, operating
conditions, failure modes, and induced failures. The
Weibull analysis method is a well-known and mature
method to estimate the mean-time-to-failure (MTTF) given
failure data (failure times). The MTTF is frequently referred
as the mean-time-between-failures (MTBF). The Weibull
model is discussed in several references such as Refs. 1-6.
The Weibull model includes the most common distributions

usually associated with a life cycle including the
exponential and the normal distributions. Weibull
parameters are used to forecast failures using direct forecast
or probabilistic estimating methods such as Monte-Carlo
simulations. The Weibull parameters are bounded
depending on the confidence level selected by the user.
Several algorithms and methods can be used to define the
confidence bounds for the Weibull parameters. The
binomial method is used in this work. The binomial method,
described in Ref. 1, calculates the upper and lower bounds
for given failure data points. Intermediate bound data points
are calculated using linear interpolation. The confidence
bounds can be used to determine the accuracy of a failure
forecast. The uncertainty in the MTTF is calculated using
the two confidence bounds for a given confidence level.

3.4 Statistical Analysis of Test Data

The statistical method referred to in this paper was derived
from the statistical process control (SPC) method and
adapted to ‘monitoring’ instead of ‘controlling’ process.
The method uses the concept of ‘patterns’, which are groups
of data points that satisfy certain conditions or have specific
properties. The main difference between the SPC and the
patterns used in this method are the threshold definitions
that are based both on statistical parameters and user-
defined limits. The following patterns are used in our
method:

Out-of-Limits — one data point above the upper limit or
below the lower limit

Close-to-the-Limit — a group of M consecutive data points
(out of N total data points close by less than P% from the
limit (upper or lower); P is a percentage of the range

Low Variability — a group of M consecutive data points
(out of N total data points) has a standard deviation less
than the overall one-sigma (this pattern is used in the
identification of step function patterns)

Step Function — the average of a group of K consecutive
data points with statistical ‘low variability’ is separated by a
minimum “distance’ from the average of a second group of J
consecutive data points with statistical ‘low variability’

Trend Line — the linear regression model of a group of M
consecutive data points

A number of other patterns not listed in this work were
investigated and later ignored since they did not contribute
to this performance monitoring and failure-forecasting
problem. In this work the linear regression was used to
calculate the parameters of the ‘trend line’ pattern. Models
other than the linear model can be used to characterize the
trend line pattern. Patterns can indicate performance status
and detect degradation. The existence of certain test result
patterns can indicate that the performance of a unit is



degrading and thus failure probability is increased. For
example: ‘close-to-the-limit’ pattems can anficipate an
imminent failure: *Trend line” patterns can be extrapolated
to intercept limit lines and estimate failure events.

3.5 Failure Forecast

The method used in our TSHMS combines the results from
the Weibull and the statistical analysis to estimate failure
dates and the associated uncertainty. The Weibull method
provides the MTTF, and the upper and lower bounds
associated with a confidence level. Given the date of last
failure, the estimated date of next failure is given by adding
the MTTF. The uncertainty is given by the upper and lower
bound times added to the date of next failure. The statistical
method uses the trend line pattern to extrapolate the time to
the next failure. The variance of the fitting line provides the
uncertainty of the estimated failure time. In this case,
calculation of the trend line parameters is made using only
the data points after a previous failure or other event that
indicates a ‘reset’ in the life cycle, i.e., the cycle for that
failure must be re-initiated. Typical patterns that indicate a
reset are "step function’ and ‘out-of-limit’ patterns.

3.5 Test Pass/Fail Criteria

Test results include a pass/fail result, which is computed by
comparing each measurement value with its associated
lower/upper limits. Software engineers establish the limits
used by the test software, after careful analysis of the
circuits that will be fested. Engineers rarely have any
feedback on their limit definitions. Experimental results
indicated that many of those limits are ill-defined in terms
of biases and sensitivity. Statistical analysis tools can
support engineers in their limit definitions. In practice it was
identified that, very often, the test measurements are within
the limits and statistically stable (low variance). However,
as shown in the typical example in Figure 1, they are biased
towards one of the limits, and present sensitivity much
higher or lower than the limit ranges. The TSHMS
prototype developed for the F-16 avionic systems provides
tools that allow the software engineers to inspect and
evaluate the measurements limits.

3.6 Causes of Re-Test OK

Re-test OK (RTOK) and ‘cannot-duplicate’ (CND) cases
occur when systems, sub-systems and units are tested using
different ATE or test procedures. A failure is detected at
one level but cannot be detected at another level of testing.
In the F-16 case there are two testing levels: 1) the flightline
testing where sub-systems (referred as line-repairable units,
or LRU) are tested as a whole, and 2) the depot testing
where sub-systems can be tested at a card level (referred as
shop repairable units, or SRU). There are many causes of
CND/RTOK. In this paper we address only the case where
experimental results have indicated that stack tolerance is
the cause of CND/RTOK. In this case the CND/RTOK can
be identified and eliminated by redefining the limits and the

range parameters of the ‘pass/fail’ criteria. These
parameters are identified using the results provided by the
statistical analysis tools.

3.7 Health Status Criteria

Station or instrument statuses are classified based on test
failure rates. Statistical coefficients such as averages and
sigma (or standard deviation) are used to define thresholds
that separate good or bad station items (instruments). In our
specific F-16 application, top-level status indicators for
stations and instruments use averages and one-sigma
parameters to classify ‘green’, ‘yellow’ and ‘red’ situations
and are presented in real-time using a web-based user
interface. Detailed levels of information and data are
presented using hierarchically structured web pages.

3.8 On-Demand Preventive Calibration

Calibration routines are usually performed at fixed intervals
of time. However, experience has shown that degradation of
performance depends not only on time but also on the duty
cycle, i.e., the stress level to which equipment is subjected.
An alternative option is to perform calibration procedures
based on the status of the instrument. Monitoring
performance and anticipating degradation can detect
calibrations.

3.9 Aircraft Malfunction Codes (MFL)

Aircrafts have a failure detection system that monitors the
avionic equipment’s performance during flight operation.
Monitoring the communication bus and identifying
malfunctions in the equipment communication process
perform this function. Each malfunction is identified by a
code (the MFL) that is stored and can be retrieved in a post-
flight operation. The aircraft maintenance staff at the
flightline level identifies possible failures using the MFL
codes. In practice, the MFL provides a source of
information that is not often trusted by the maintenance staff
due to the weak correlation between the MFL code and
actual failures. Very often MFL are ignored and are used
only to refer the suspected failing system or sub-system to
the next level of testing. We are currently developing a
prototype to track and link the MFL to all levels of testing
and repairing processes. This link will allow the aircraft
maintenance staff to associate MFL codes with actual
failure and repair actions at the flightline maintenance level,
thus avoiding another source of CND/RTOK.

3.10 Test Station Mission Capability (MC)

The tools implemented in the TSHMS can also be used to
provide the testing capability of an ATE. Statistical results
from the station’s instrument self-tests are used to rate the
functional capability and quality of the testing equipment.
Failure rates and performance status of the instruments are
then used to calculate a coefficient, which is used to define
the mission capability rate (MCR) of the station.



3.11 User Interface

All TSHMS information can be immediately and securely
accessed via an Internet browser. End users can securely
access all results and information stored in the database
with no additional software applications except the browser,
Outputs include textual and graphical (printable) reports.

4. EXPERIMENTAL RESULTS

Actual F-16 avionic systems repair and test data are
currently being applied to validate the method. Results
shown here were obtained during the prototype
development phase. Repair data has been collected since
September 1997. Test data has been collected since
December 1999. Repair data and test data are not available
for all items at all times. There are gaps of data collection.
However, there is data enough to provide conclusions to
this work. Typical MTBF for this kind of item ranges from
2,000 to 3,000 hours. At a maximum usage rate of 200
hours per month, items are expected to fail and show up to
repair every 10 to 15 months. Therefore, only a few items
failed more than three times during this period, and had the
same failure modes (same components replaced or
repaired). The results presented in this paper correspond to
items with enough repair and test data to investigate the
accuracy and validity of the method. Other results are also
presented in Ref. 8.

5. CONCLUSIONS

A test station health monitoring system was successfully
implemented using test, repair and failure data, and
statistical methods. The methods are capable of monitoring
the performance, forecasting failures, and calibration
inspection needs of instruments in the test station. The
method is capable of identifying stack tolerance problems
and detecting some causes of CND/RTOK due to stack
tolerances. The statistical and Weibull methods are
appropriate but still require better sources of operating time
and failure mode information. The system can be
implemented in any equipment capable of outputting test
results and capable of accessing repair information.
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