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Abstract - This paper presents a methodology to detect
performance degradation with a certain degree of
confidence, and a decision support model to help
engineers and technicians to solve ongoing diagnostic
and repair problems. The method is capable of
detecting changes in performance trends when data
captured at different times or ages during the system’s
active life, is compared to estimated performance limits.
This paper applies the method to the specific case of
aircraft avionic systems and their associated support
equipment. The methodology is currently being
developed and applied to existing aircraft avionic
equipment and  maintenance  processes. The
methodology explores the ability of statistical control
process applications and expert systems based
technologies to develop trend analyses data and provide
performance degradation information to maintenance
engineers, technicians, and managers. The paper will
address specific data capture and component
identification problems encountered in actual test data,
and will discuss automated solutions for these
problems. A complete architecture will be presented
displaying the data capture process, data storage,
statistical and expert system processing, and output
information display. The solution includes the specific
technology used to implement the process and output
information samples based on actual test data.

INTRODUCTION

Any known system will fail or misbehave at some point.
It is just a question of when. The effect of the failure or
change in performance interferes in different degrees
with missions that depend on that system. In critical
missions a system failure can lead to catastrophic
consequences. Significant changes in the performance of
equipment may occur as a result of aging and other
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factors within weapon systems and their associated
support equipment. Current methods do not allow for the
effects of these factors in the determination of equipment
performance tolerances or test limits, resulting in
apparent and actual decreases in equipment readiness
and test program precision. The overall cost of a failure
or malfunction, measured in any standard, is always
higher than the preventive action. Therefore, system
users are interested in knowing when a system or part is
about to fail in order to take preemptive actions.

The methodology presented in this paper is designed to
comply with a variety of architectures and processes to
collect, parse, store, and process both test and failure
data, and distribute failure prediction information. The
SYSTEM CONCEPT section describes the overall
system concept. The SPC ANALYSIS section describes
how trends are detected to support the failure prediction.
The WEIBULL ANALYSIS section describes how
failures parameters are computed and integrated with the
SPC results. The EXPERT SYSTEM describes how the
SPC trends and the Weibull analysis are integrated to
populate the knowledge base and generate end-user
advisories. Actual results are presented in section
CURRENT RESULTS. The latest conclusions about the
research are presented in the CONCLUSIONS sections.

Although the general concepts and architectures are
discussed and presented, this paper will concentrate on
the data analysis and expert systems methodologies used
to predict component failures. These methodologies are
currently being developed to support the USAF F-16
aircraft. All numerical results presented in this paper are
unclassified F-16 actual data.




SYSTEM CONCEPT

Data Sources and Data Collection

With the coverage provided by current communications
technology, data can virtually be collected from
anywhere, provided that there is a link to the data
originator. Secure communications can be achieved
through encrypted codification and other mature and
well-known technologies. Data links include the Internet,
LAN, WAN, phone, and wireless communications. Once
the connectivity between the data originator and the
processing center is established, data can be collected and
programmed by an automated process. Locations
(domains, folders, instruments, etc.), time, and collection
rules can be scheduled to accommodate a fully automated
data collection process.

In our specific application for the F-16 avionics, test data
is provided by ATE connected to a LAN. Parts tested by
the ATE machines are separated in three types: 1) F-16
aircraft parts, 2) ATE (test station) internal parts, and 3)
hardware interfaces. Aircraft parts are shop replaceable
units (SRU) detected as defective by flightline
maintenance personnel. Test station parts are station
components tested during self-test routines. Hardware
interfaces are sub-systems used to interface the aircraft
parts and the ATE. The test routines are controlled by
software (written in ATLAS language) running on the
ATE. In all three cases the test software outputs test
parameters, such as part identification and test results,
from the ATE to a PC emulating terminal via serial port.
The ASCII format information transmitted from the ATE
to the PC is captured to files located in the local hard-
drive. The ASCII files are then collected to a central
server, parsed, and stored in a database.

Data Storage

The database is intended to store all raw test data and
results from statistical analysis. Failure data is provided
by a remote system designed to collect and store depot
“work documents”. These documents contain information
provided by the maintenance technicians regarding
replacement parts and other repair information. Both test
data and repair data are applied to the method described
in this paper. The system is compatible with two database
formats: Microsoft (MS) Access, and MS SQL Server.
The selection of these formats is based on maintainability
and supportability requirements by the customer’s
network administrators. The MS-Access format is used
during the development and is very portable. The MS-
SQL Server will be used in the final production version.
The compatibility between the two formats turns
migration an easy task. The implementation is not

limited to the MS formats. The Open Database
Connectivity (ODBC) used in the development turns the
interfacing with any ODBC compliant database.

Data Analysis

Statistical control process (SPC) tools processes and
analyzes the raw test data, and the Weibull analysis tools
processes repair (failure) data.

Statistical Process Control

Statistical control processes (SPC) are analysis tools used
to check rules against data points. The rules basically
verify if any, and in positive case how many, data points
fall within a range of values. The validation range is
defined to characterize events such as out-of-limits data
points, data points in the 3o zone, N out of M
consecutively increasing (or decreasing) data points,
decreasing averages, etc. Individual events and group of
events, associated with existing knowledge about the
system’s performance, will lead to performance
degradation detection. Regression analysis applied to the
data points can also lead to failure prediction by
comparing trends and acceptable tolerances or limit
values.

Weibull Failure Analysis

The Weibull analysis is traditionally used to analyze
component or system failures. The traditional Weibull
parameters are the shape parameter, the characteristic
life, the initial date, and the mean-time-to-failure
(MTTF). These parameters are used to compute
reliability, probability distribution function, risk analysis,
and other statistical information. The Weibull
distribution can be separated in the 2-parameter and the
3-parameter distributions. Alternatives to the Weibull
distribution are the Normal and the Log-Normal
distributions. The Weibull parameters can be determined
by regression or by maximum likelihood methods. The
likelihood method provides the confidence levels for the
estimates. The goodness-of-fit, based on the r°
coefficient, compared to the critical correlation
coefficient, provides a criteria to select the best data
distribution (Weibull 2-parameter, Weibull 3-parameter,
or Log-Normal). Failure data is represented by age at the
failure. For the F-16 case, the exact age of failure is not
accurately tracked. The best age information is based on
the repair date logged in the shop work documents. The
repair date can be days, and sometimes weeks, off the
actual failure date. This data uncertainty leads to low
confidence levels and uncertainties in the estimated
Weibull analysis results.



Expert Systems

(include a brief description on the Expert System
concepts and uses, based on other applications — details
will be mentioned in the following sections)

Output Information Display

Decision support information is released to end-users as
technical advisories. Information is displayed from the
lowest level of complexity to the most detailed
information available, upon request by the user. The
information is accessed directly from the database with
minimal client side processing.

In the F-16 avionics case, information is displayed to
engineers wusing LabVIEW virtual instrument (VI)
modules. These modules are also available via browser.
The information is also distributed via web-based user
interface.

THE SPC ANALYSIS

The statistical process control (SPC) tools consist of a
series of rules that are checked against a set of data
points. The rules are designed to detect events such as
data points outside upper or lower limits. This basic rule
simply detects if output signals are out of tolerance,
possibly indicating a component failure. Other rules
anticipate the out-of-limits event by checking data points
in the one, two or three-sigma zones (sigma = standard
deviation). Yet other rules detect N out of M consecutive
points within a certain zone of values that evidence mal-
functioning. A certain combination of infringed rules
may indicate that a component is close to fail. Despite the
fact that the SPC rule checkers are standard procedures,
the failure analysis (or simply ill-behaviored), the
combination of checks and infringed rules that provide a
failure diagnostic is particular to a specific system or
component. The problem is turned complex when
multiple-failure modes are present.

For the particular case of the F-16 avionics system the
following SPC rules were checked:

number of data points above (or below) the upper (or
lower) confidence limit,

number of data points above (or below) the upper (or
lower) limits,

number of points in the 1o, 2o, and 3o zones,
N out of M consecutive points in the lo, 2c, and 3o

ZOnes,

N out of M increasing (or decreasing) values,

WEIBULL ANALYSIS

The Weibull analysis tools consist of algorithms that
analyze failure data provided by the repair database. A
minimum of three failure data points is necessary to
perform the Weibull analysis. The basic information that
is output by the method is the mean-time-to-failure
(MTTF). This information provides the time units
remained until the next failure with a certain confidence
level. The confidence level is affected mainly by the
accuracy of the failure age (date and time of failure). The
more accurate is the age, the more accurate the failure
can be predicted. The goodness-of-fit is represented by
the r* correlation coefficient. This coefficient can be used
to select the ‘best fit’ distribution. The correlation
coefficient is compared to the ‘critical correlation
coefficient’ to identify which statistical distribution best
fits the data points. The following distributions are
available: two-parameter Weibull, three-parameter
Weibull, and log-normal distributions. Weibull charts
plot age of failure against median rank. Auth and
Bernard methods calculate the median rank.

For the F-16 case, the Weibull analysis is being applied
to avionic parts. A particular avionic part number (P/N)
/serial number (S/N) was selected to validate the
methodology. This particular P/N-S/N system has 15
known failures and four different known failure modes.
The two most frequent failure modes have eight and four
occurrences respectively. The other two failure modes
have two and one occurrences each. The first two modes
will be used in a ‘reverse engineering® process to validate
the software. All failures are plotted in a Weibull chart
and presented in figure 1. This figure presents all
failures for the specific P/N-S/N combination. The failure
dates are represented by the actual repair dates, thus
introducing some uncertainty in the failure ages. All
components that were repaired (replacements and or
adjustments) are known.
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Figure 1 — A Weibull plot with multiple failure data
points,

Figure 1 clearly shows that the failure data points belong
to different failure modes (at least three break-lines). The
automatic detection of the ‘best fit’ suggested the three-
parameter Weibull distribution. The lack of initial
knowledge of the failure modes does not make the task of
grouping the data points an easy one. In our case, the
anticipated knowledge of the failures helped in
determining the data point groups. Figures 2 and 3
present the Weibull charts for the data points grouped by
failure modes.
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Figure 2 — Weibull chart for failure mode no.1

Figure 2 presents the Weibull charts for the data points
related to the failures that required the replacement of

‘P1’ component. The characteristic life is determined to
be 38.06 days. In practice, the failures occurred every
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Figure 3 — Weibull chart for failure mode no.2

Figure 3 presents the Weibull charts for the data points
related to the failures that required the replacement of the
‘handle’.

The Weibull algorithms are classical and presented in
many references [2], [3].

EXPERT SYSTEM

(this section will describe the specific ES that will be
used to integrate all data and information and provide
advisories to end-users — include the knowledge base)

CURRENT RESULTS

The system currently accumulated more than 200,000
test data points for about 40 different parts (aircraft and
station) and 100+ test types. 40,000+ records
representing over 400 part numbers represent repair data,
Figure 4 presents test data points acquired in a three-
month period for a specific station P/N. The data points
correspond to measurements on a SVDC power supply.
In this case a trend is clearly identified. By immediate
visual inspection and liner regression, a drift of -0.05
volts/day is detected. With a lower acceptable limit of
4.95 volts, and at the current rate, the threshold should
be reached in 100 days. At this time either part
replacement or adjustment should be required. Preventive
maintenance can be anticipated to avoid reaching the
failure point. The SPC tool applies the rule check
procedures and provides advisories as the measurements
enter the 1o, 20, or 3o zones. The interpretation of the
discontinuities in the signal requires more deep analysis.



Factors such as room temperature and humidity are
known to affect the measurements. However these factors
arec not automatically captured. Small steps are also due
to adjustments. The automated process continuously
monitors the P/N and advisories are posted to engineers
and technicians informing about potential failures and
degraded performance.

Selected Test Data
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Figure 4. Test data and trend analysis on a 5VDC power
supply.

CONCLUSIONS

The decision support system (DSS) presented is capable
of detecting performance degradation. The already
achieved results show evidence that failures can be
forecasted with a certain degree of confidence. The
accuracy of the information is dependent on the accuracy
of the “age” of the data. The maintenance personnel do
not accurately provide dates. Trend analysis is also
affected by the lack of data such as serial numbers. The
DSS is also capable of providing failure advisories for
no-failure parts.

POTENTIAL APPLICATIONS

The DSS is capable of supporting a large number of
processes where performance must be monitored and
degradation and failure is critical. The acrospace industry
has benefited from the failure analysis in the propulsion
area. Weibull is intensively applied to predict failures in
acronautical engines. The Weibull analysis tools
presented in this work are available for direct use in areas
that require a methodology to determine failure analysis.
The automotive industry is increasing its on-board
diagnostics capability. Test emission methods and engine
maintenance procedures can be improved by more
advanced sensors, data capture processes, data analysis,
and diagnostic procedure. Lipke and Vaughn presented
in their reference [3] how SPC can be applied to
management. Their paper specifically deals with the case
of software development management tools. Financial
health, project management, workload and labor, and
process improvement can be monitored and measured
using SPC tools as the ones presented in this work. Some
other areas of potential use are: monitoring and detection
of performance degradation in satellite navigation

systems, such as the GPS/GLONASS, medical

diagnostics and health monitoring systems.
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